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Abstract. The dynamic s t t w t m  factor of very large percolating clusters (bond and site), in two 
dimensions and three dimensions are calculated using the spectral moments methad. Interactions 
are represented by the scalar model. Numerical results are presented and interpreted in terms 
of scaling arguments given by Alexander, Courtens and Vacher (ACV) in 1993. Concerning 
the qA << 1 limit, our resuks confirm and supplement previous numerical work and are in 
agreement with the scaling behaviour theoretically deduced by ACV. Concerning the q A  >> 1 
limit, we have shown that the dynamic swcture factor complies with the very nice asymptotic 
behaviour g(q, 0) = qYH(qA(0)) where the scaling function H(x) is of power-law form I"' 
in agreement with the theory. However, our results indicate a scaling behaviour with exponents 
that differ from fhose deduced by theory. The values obtained for i' are 1.20 for the two- 
dimensional bond and site percolating lattices, and 1.00 for the three-dimensional percolating 
lattices. Comparisons with previous simulations are repotted. 

1. Introduction 

One way of studying materials is to scatter particles from them. Two examples of this type 
of experiment are Raman scattering of light and scattering of thermal neutrons. These 
differen? types of scattering can' be treated with the same formalism. The differential 
cross section u(q, w )  is directly related to the Fourier transform of the thermodynamics 
comelation function g ( q ,  U ) ,  where h q  and h o  are the momentum and the energy transferred 
by the particle to the sample. In  a perfect crystal, the displacement field can be developed 
by plane waves and it is easy to show that, from the Bloch theorem, determination pf 
the correlation functions simply involves the computation of the inelastic skucture factor 
of the unit cell. In the presence of disorder, the system must be considered as a large 
macromolecule and determination of the, correlation functions is much more difficult. Two 
methods have been developed to determine these quantities. The first method consists 
of directly computing the differential cross section from models where the positions of 
particles and potential are known. Concerning percolating networks, such computations 
have been done, using different techniques such as direct diagonalization (Montagna et a! 
1990, Stoil et ai 1992). resonance methods (Yakubo and Nakayama 1989) or the spectral 
moments method (Benoit et al 1992b). The spectral moments method directly provides 
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the exact inelastic scattering cross section of very large systems and has been applied to 
determination of Raman scattering in polythiophene (Poussigue eta! 1991) and in ordered 
and disordered Sierpinski gaskets (Benoit etal 1992a), and to inelastic neutron scattering of 
quasicrystals such as the Fibonacci chain (Benoit et al 1990) and i-AIMn (Poussigue et al 
1994). Recently, applications of the method to the study of the propagation of sound waves 
and electromagnetic waves in heterogeneous systems with or without energy dissipation 
have been developed (Bennit et a1 1995). 

Another approach using dynamic scaling considerations, without a specific physical 
model, was developed by Alexander (1989) and Alexander, Courtens and Vacher (ACV) 
(1993) in order to interpret a variety of inelastic experiments in fractal materials such as 
sol-gel glasses (Boukenter et al 1986, Freltoft et a1 1987), borate glasses (Fontana et al 
1987), silica aerogel (Tsujimi et al 1988, Vacher et al 1990) and metal colloids (Duval et 
al 1987, 1992). In this work, they postulated that vibrations of random fractals should be 
characterized by a single unique length scale which combines the roles of a wavelength, 
a scattering length and a localization length. They also related the dynamic correlation 
function to the average strain of the fractal mass distribution. Alexander (1989) proposed 
a scaling form for the dynamic structure factor and introduced a new and independent 
exponent U related to the average coherent strain of fractons. The first attempt to compute 
the dynamic structure factor and light scattering was done by Montagna et al (1990). using a 
diagonalization technique. They obtained results for site percolating (SP) networks formed 
on 65 x 65 square lattices and 29 x 29 x 29 cubic lattices and claimed that the fracton 
excitations cannot be scaled by a single length scale. However, the single-length-scale 
postulate (SLSP) was confirmed by Stoll et al (1992), who calculated the dynamic structure 
factor for the bond percolating (BP) network, using a direct diagonalization technique, for 
68 x 68 square lattices and 21 x 21 x 21 cubic lattices and by Nakayama and Yakubo (1992), 
using a resonance technique, for SP networks formed on 500 x 500 square lattices. 

To clarify some discrepancy between the numerical results obtained by the workers cited 
above, we developed a systematic study of the dynamical structure factor on very large 
SP and BP networks in two dimensions (500 x 500 square lattice) and three dimensions 
(85 x 85 x 85 cubic lattice) using the spectral moments method (Benoit et al 1992b). 

Before presenting the results and discussion, we shall introduce the scaling arguments 
of the dynamic structure factor, as proposed by Alexander (1989) and ACV (1993), in order 
to interpret our numerical results. 

2. Scaling theory on the dynamic structure factor 

Work on the dynamics of a percolating network has been fundamentally affected by the 
paper of Alexander and Orbach (AO) (1982). In this paper, A 0  (1982) considered that 
scaling with the frequency o of the fracton density of states is 

N ( o )  % U'-' (1) 
where the spectral dimension d is conjectured to be equal to 4/3, in the case of scalar 
elasticity, independently of the fractal dimension D of the percolating network. This 
conjecture was confirmed by many simulations (Yakubo and Nakayama 1987, 1989, Russ 
et al 1991, Royer et al 1991, 1992, Rahmani et al 1993) (see also the review paper by 
Nakayama et al (1994)). The dispersion relation between the localization length and the 
frequency UJ is 

A(@) - o+D. (2) 
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The following arguments are derived from the theory proposed by ACV (1993). In 
this work, they postulated that the vibrations of fractals should be characterized by a single 
unique length scale which combines the roles of a wavelength, a scattering length and a 
localization length. This SLSP was confirmed by simulations (Stoll et a1 1992). 

The inelastic cross section is directly related to the displacement-displacement 
correlation function, which is given by 

,(S(w - W j )  - S(O> + W j ) )  

% G(q, 0) = + 1) lal(q)l 
I 

where r, is the equilibrium position of the nth particle, wj and (cm j )  are the frequency and 
the (an)  components of the eigenvector I j )  of the jth mode, 1y = x, y. z are the Cartesian 
indices, kT is the thermal energy and qo is the component a of q. 

The dynamic correlation function or dynamic strncture factor g(q, w )  is defined by 

g(q, w )  = Iaj(q)12S(w 7 wj). (5 )  
j 

Assuming the validity of the SUP, in the case of scalar elasticity, the function g(q, w )  
has a universal scaling form and depends only on the single length scale h(w) - & I D :  

g(q.  w )  = qyH(qA(w)) (6) 
where q = IQ]. 

form, 
ACV postulate an asymptotic behaviour of the scaling function H ( x )  of a power-law 

for x << 1 

for x >> 1. 
H ( x )  - (7) 

5 and 5' are new scaling positive exponents. It describes the modulation of the density in 
space by vibrations. 

2.1. The qh << 1 limit 

The dynamic structure factor is directly connected, for a given frequency w, to the q Fourier 
component of the eigenvectors of fractons with a frequency wj close to 0. In the qh << 1 
limit, we afe concerned about the Fourier components of the eigenvectors which correspond 
to a wavelength much larger than the length scale. This limit thus corresponds to long-range 
motion. Within a vibrating region vj, in the small-q limir we can expand exp(iq. T.) as 

exp(iq. rn) = exp[iq. (rn - Rj) + iq . Rjl 

= exp(iq. R j ) [ l  + iq. Ri + I .  .] 

where Ri = r, - Rj and Rj is the 'cenhe' of the vibration j defined by 



or in dyadic form 

with u i ( n )  = (ornlj). This quantity (12) characterizes the jth fracton. This averages out 
all details of the internal motion, and it is only sensitive to the average relation between the 
vibrational amplitudes and the position within the jth fracton. Defining an average strain 
tensor Bj(r), it can be shown that 

Dip = R!@i(Ri) + R,$R$?L6(r) . (13) 
n 6 

where 

The first term equals zero and equation (12) can be written as the dyadic product 
8' = Z(R; 8 R;) . e j .  (15) 

"E", 

Since the Rj in the vibrating regibn vj are all of the order of As we obtain a scaling relation 
relating the magnitude of b and a: 

(16) Dl AD+ze j ,  

Alexander (1989) assumes the scaling form 
(2') - ( U ~ ) A - ~ ~  (17) 

where U is a new scaling index describing modulation of the density in the embedditig 
space by the vibration. The mean-squared amplitude is given by 

(UZ) -A+. (18) 
By equation (3, one obtains 

g(q, 0) - ~ ( a )  Iaj(q)Iz. (19) 
j 

From equations (lo), (16) and (17j and using the relations (1) and (2), one obtains that 

where y = 4 and 

To preserve the scaling'form (equations (6) and (7)), one deduces that 

and 

g(q,  0) - qyw-' (7-0) 

. ' E =  1 - ( 2 ~ - 4 ) J f D .  (21) 

y = 2 0  - Of?'  (22) 

D 
d 

'Z = T E .  (23) 
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2.2. The qh >> 1 limit 

In this limit, we are concerned about the Fourier components of the eigenvectors which 
correspond to a wavelength much smaller than the length scale. The phase factor exp(iq.r,) 
is therefore uniform over small regions of size lq - q-I << h. 

The vibrating region U will contain ( h / l q ) D  - (qA)D blobs of this size. Each blob will 
contain (qa)-D particles. With Rjb, the centre of the mass of particles in the blob b in the 
fracton region vj (small by construction), one obtains 

exp(iq. rn) = expliq. (r,, - Rjb) + iq . Rjb] 
= exp(iq. RJb)[l + iq. RLb + . . .] 

where RLb = T. - Rjb. Therefore the quantity 

Let us define Uib ,  the average displacement on the blob of volume Vb, by 

S,o one obtains 

Phase factors expfiq. (Rjb - Rjb‘)] clearly appear in evaluating g(q, w )  (equation (3)). 
For larger q and very disordered systems, one has to conclude that there is no coherence 
between the scattering of different blobs. 

Thus, g(q, w )  is composed of two contributions: 

g(q, 0) = gl(q. 0) + g z h  w )  (28) 
where the first term results from the separate motion of blobs and is given by 

and the second is related to the internal strain of the blob due to the jth fracton and is given 
by 

nbb 

. .  Assuming that 

ACV,,from equation (26), deduced that gI(g, w )  complies with the power law 
IUjbl- p X A ?  (31) 

~, 

gl(q, w )  - q%JJfll (32) 

(33) 

61 s - 2 ~  - D (34) 

- where 

B l s d - 1  

and 



8908 A Rahmani et a1 

where, to preserve the scaling form (equations (6) and (7)), one deduces that 
x = Z(0  - 1) 

r; = D - D/Z. 

(35) 

(36) 
Following the same method as developed for g(q, w ) ,  in the qh << 1 limit, one obtains for 

(37) gdq. 0) - N(u)(qL)  4 (D ) 

* (38) DL; = 1 RjhRibejb 
n~ na us' 

and 

the g2(q ,  0) 

D 4 - j b 2  

where the elements of bjb are given by 

neb 
8 

Integration over the blob, in the continuous limit, gives 
161 , q - (D+2)~z~  (39) 

where 

82 = -D (42) 

a = 2 o d / D + d  - 1 ~ 

r; = 2~ i- D - D/Z. 

and 

(43) 

(44) 
From Stall er a1 (19921, one expects that overall motions of small blobs control the 

and, from equation (7), 

limit qh >> 1, i.e. r[. The internal strain of blobs would dominate for qh - 1. 

3. Numerical results 

In this study, we compute the dynamic structure factor (equation (5)) of the site and bond 
two-dimensional (2D) square and three-dimensional (3D) cubic percolating networks. In 
all the systems below, we assume that atoms of mass m = 1 are placed on the lattice 
sites. Interactions are represented by the scalar potential. The spring constant is taken to 
be Kij = 0 if either sites i or sites j are unoccupied and Kjj = I otherwise. Each system 
consists of a single very large cluster: the infinite cluster. 

For harmonic solids, the moments method was first used by Montroll (1942) to calculate 
the density of one-phonon states. In the dynamics of condensed matter, the exact evaluation 
of the response was developed by Benoit (1987,1989) and applied to different systems 
(Benoit et al 1990, 1992a,b, Poussigue etal  1991, 1994, Royer etal 1991, 1992, Rahmani 
etal  1993, 1994). 

In this work, using the spectral moments method, we developed calculations of g(q, w )  
for percolating systems formed on 500 x 500 square and 85 x 85 x 85 cubic lattices for 
values of site and bond occupation probability p near pc  (0.5 in two dimensions and 0.249 
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in three dimensions for BP and 0.593 in two dimensions and 0.312 in three dimensions for 
SP). 

The fractal dimension D of these systems is D = 1.89 and D = 2.5 in two dimensions 
and three dimensions, respectively. Several tests were performed on three clusters formed 
on cubic and square lattices of different sizes. We report here the results of clusters of 
178205 sites (2D BP), 108 326 sites (2D SP), 226940 sites (3D BP) and 106993 sites (3D 
SP). All exponents are the average of 25 values of q and w in the studies of w dependence 
and q dependence of g(q, U) ,  respectively. For all clusters the computations were done for 
100 different wavevectors n/100 < q < r. We also note that the computations were done 
for 200 different frequencies w,,,/ZOO < w < U,,, = a, with d the space dimension. 

0.0 

-1.0 

3 
2 -2.0 to 
I 

-3.0 

4.0 

-1 4.5 0 03 1 

Log(o ) 
Figum 1. The dynamic structure factor g ( q ,  m) versus m on a log-log scale, for the ZD BP 
cluster for eight values of q:  -+-, q = 0.079; -0-, y = 0.198: -@-, q = 0.314; -A-, 
q = 0.498: -e-, y = 0.789; -Q--. y = 1.251; -#-, q = 1.982; -, q = 3.142. 

In figures 1 and 2, we report, on a log-log scale, the frequency dependence of the 
dynamic structure factor g(q, 0) for the d = ~ 2  and d = 3 BP clusters for some values of 
the wavevector. The abscissa indicates the frequency o. In order to show that the data 
collapse well, we report in figures 3 and 4 on a log-log scale, the qh(w) dependence of 
the function H(ql(w))  = q-Yg(q,  o) for the d = 2 and d = 3 SP clusters. The abscissa 
indicates the quantity qh(o).  Curves are obtained by averaging over 50 values of the 
wavevector q,. We define WO as the frequency at which g(q. w )  has a maximum value for 
each fixed wavenumber q .  As qh(oo) = 1, for w >> WO (w << W O )  this corresponds to 
the qh << 1 (qh >> 1) limit. In figures 5-8, the wavevector dependence of the function 
g(q, w ) / q 2  for the d = 2 and d = 3 BP and SP clusters for some values of the frequency 
are reported, on a log-log scale. The abscissa indicates the wavevector q. We define qo 
as the wavevector at which the function g(q, w)/q2 has a maximum value for each fixed 
frequency w. As qoh(w) = 1, for q >> qo (q << qo) this corresponds to the qh >> 1 
(qh << 1) limit. 

The length scale versus the frequency for the 2D and 3D clusters are plotted, on a 
log-log scale, in figures 9 and 10, respectively. 

Let us consider the results concerning the 2D BP cluster. From figure 9, we observe 
that the scaling length complies with the power law l ( w )  - w-0.73*0.M. From equation (2), 
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0.0 

-1.0 - - 
3. c -2.0 
tn 
CO 
-1 

- - 
-3.a 

4.0 

. ,,.... , , ,.,, , ,. ~ -5.0 ' 
-1 -0.5 0 0.5 1 

LOg(m ) 

Figure 2. The dynamic slmcmre factor p(q. 0) versus U, an a log-lag scale, for the 3D BP 
cluster for eight values ofq: -e, q = 0.079; -0-, q = 0.125; -U-, q = 0.198: -A-* 

0.314; - 0 ,  q = 0.498; A-, q = 1.251: -a-, q = 1.982; -, y = 2.736. 

-1.5 -1 -0.5 0 0.5 I 
Log( q" 

Figure 3. The function q-Yg(q. U )  versus qA(o), an a lag-log scale, for the 2D SP cluster. 

&(U) - d I D .  According to the A 0  conjecture 2 = 4/3, with D = 1.89, one obtains 
d / D  = 0.705. The agreement is very good. 

Considering the asymptotic behaviour of the dynamic structure factor in the qh << 1 
limit, the results show (figures 1 and 5 )  that the function g(q ,w)  -  YO-^ with 
y = 4.00 f0.05 and 01 = 2.31 +0.03 (table 1). These values are obtained by averaging 
over 25 different wavenumbers ( ~ / 1 0 0  c q c r /4)  for 01 and 25 different frequencies 
(Sw,,,/8 < w Q 3wm,/4) for y. The behaviour of g(q, w )  and the value of y are in 
complete agreement with the theory (equations (ZO), (21) and (22)). One obtains from 
equation (23) r = 3.28 with 2 = 4/3. Using equation (D), one finds that U = 1.07 with 
the A0 conjecture (table 1). These results are in agreement with the intuitive notion that 
U 2 1 (ACV 1993). 

In the qX >> 1 limit, the theory predicts the dynamic structure factor 

g(q,o)  - Aqsl& + Bq6@ (45) 
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5 /  - - 
3 4  
d. 
M 

x 3  
'G 

- 
- 
-1 $ 2  

1 

0 ~ 

-1.5 -I -0.5 0 0.5 1 
Log( q" 

F i p  4. The function q Y g ( q ,  U) versus q i (o ) ,  on a log-log scale. for the 3D SP cluster. 

-1 .0.5 0 0.5 
Log( q 

Figure 5. The dynamic s t r u c N ~  factor g(q, o) versus q.  on B log-log scale, for the 2D BP 
cluster for six values of o: -+-, o = 0.226; -0-, o = 0.353; -0--. o = 0.552; -A-, 
o = 0.862; -e-, o = 1.346; -0-, o = 2.101. 

where 61, j31, 62 and 8 2  are given by equations (33) and (34) and equations (42) and (43) 
as functions of U, d and D .  From the value of U obtained in the qh << 1 limit, one obtains 
61 = 0.25, = 0.33, SZ = -1.89 and 82 = 1.84 (table 2). The computation (figures 1 and 
5)  shows that g(q, w )  -q6w@ with the presence of two regimes. For qh - 1 the values of 
the exponents are dependent on the values of q and w .  However, for sufficiently larger q 
(or smallest w), this limit is found to have very nice asymptotic behaviours g(q, o) - qswa 
with 6 = -0.55 and j3 = 0.88, which are quite different from the expected values. These 
values are obtained by averaging over 25 different wavenumbers (x /4  e q i IZ) for j3 and 
25 different frequencies (w,,,/ZOO < w < w,,,/S) for S. 

However, as mentioned by ACV, it is possible to assume the presence of an additional 
factor (qh): in equation (31) or in equation (40). Then, equation (28) is now written with 
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,,.....,.,.. , , , ,  . , , ,  2.0 ' 
-1 -0.5 L0g(q) 0 0.5 

Figure 6. The dynamic structure factor g(q, o) versus q.  on a log-log scale, for the 2D SP 
cluster for six values of e: -4-, w = 0.226; - 0 ,  w = 0.353; -U-, o = 0.552; -A-, 
o = 0.862; -0-, w = 1.346: 4-, o = 2.101. 

I ZO . ., . , , , ,. , , 

Figure 7. The dynamic SmCNre factor g(q, o) versus 9 on a log-log scale, for the 3D BP 
cluster for six values of U: -+-, o = 0.353: -0-, o = 0.552; -a-, o = 0.862; -A-, 
U =  1.346:-0--,w=2.101;-0-,w=3.281. 

-1 -0.5 Loglq) 0 0.5 

By comparison with the computed values of 8 and p ,  for the first term, resulting from 
the separate motion of the blobs, we find that ZJ = -0.80 from the q dependence and 
ZI = -0.78 from the frequency dependence of the dynamic structure factor. Now, if 
we assume that the second contribution resulting from the internal strain of the blob is 
dominant, one obtains zz = 1.34 from the q dependence and zz = 1.36 from the frequency 
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2.0 
-1 -0.5 (I 0.5 

Log( q ) 
Figure 8. The dynamic structure factor g(y. w )  versus 4. on a log-log scale, for the 3D SP 
cluster for six values of o: -e, o = 0.226; -0-, o = 0.353; a-, o = 0.552: -A-, 
o = 0.862; - 0 ,  o = 1.346; -0-, o c 2,101. 

0.5 r 
i 

0.25 

- 0  
5 
x -0.25 
B 
- 
-i 

-0.5 

-0.75 

-1 
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 

Log(0 1 
Figure 9. The values of the wavelength *(U) plotted 3s a function of frequency o an dag-log 
scale. for lhe 2D percolating clusters: +, ?D SP; 0. 2D BP. 

dependence. 
The same analyses have been performed on the three other clusters. The results are 

summarized in tables 1 and 2. We have also reported the results obtained by Stoll et al 
(1992) and Nakayama and Yakubo (1992). 

4. Discussion and conclusion 

First, we note the excellent agreement with the theory, for the four clusters, concerning the 
scaling law of the length scale h(w) (figures 9 and 10 and tables 1 and 2). This behaviour 
was verified by Stoll et a1 (1992) for the localization length on 2D and 3D BP clusters. In 
OUT computation, h(w) corresponds to a wavelength, defined as the inverse of the value of 
q for which the Fourier components of the eigenvectors of fractons with a frequency w are 
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ob - 
3 v 

x, 
3 
M 

-0.25 

-0.5 . .  

0.75 1 1.25 1.5 1.75 
Log(w ) 

Figure 10. The values of the wavelength A(o)  plotted as a function of frequency w on a log-log 
scale, for the 3D percolating clusters: 0, 3D SP; 43 3D BP. 

Table 1. Values of the exponents y,  w, d, s md r for thefour percolating clustca in the 
q A  I limit. {d/D)num are deduced from figures 9 and 10. (d/D),heo are calculated from the 
fixed values of D = 1.89 and d = 1.33 * 0.02. 

U d ( J / D ) n u m  d/D)tsm U I 
-~ ...,,., ,, . , ,  .. ., ,,, ,.., ,,,., , ,, ,, .,.., 

Y 

2D BP 4.00 i 0.05 2.31 i 0.03 1.33 rt 0,02 -0.73 jO.Q2,, . . , ~ , J Q , i O , Q l ,  1.07 rt 0.04 3.28 i 0.10 
1.05' 3.32' 

2 D S P  3.98&0,05 2.34rtO.03 1.33i0.02 0.70iO.M 0.70+0.01 1.05f0.04 3.33*0.10 
L l l b  3.32b 

3DBP 4.00i0.05 2.03f0.03 1.33fO,.P2 0.55itP.D2 ,,,,.. 0,.53,+.Q.01 1.03rt0.05 3.82i0.11 
1.1' 3.65' 

3DSP 4.00i0.05 1.98i0.03 1.33rt0.02 0.53i0.02 0.53i0.01 1.08rtO.05 3.72i0.11 

From Stoll eta1 (1992). 
From Nakayama and Ykubo (1992). 

maximum. These results are in agreement with the SLSP of ACV. 
As can be shown in table 1, in the qh < 1 limit, where q-' is much larger 

than the fracton size, for the four models we note that, in agreement with the theory, 
g(q, co) - q4.Mtto.05. From the j3-value or from the scaling form of the 2D and 3D SP 
systems (figures 3 and 4), one obtains T N 3.30 for the 2D systems and T N 3.77 for the 
3D systems, in agreement with the values of Stoll er al (z(2D) N 3.32 and r(3D) N 3.65) 
obtained for 2D and 3D BP networks, and of Nakayama and Yakubo (z(2D) = 3.20) for 
the 2D SP cluster. 

We note that in the four systems the vaIues obtained for cr are in accordance with the 
conclusion of ACV that U > 1. 

The only precise work concerning the q h  >> 1 limit is that of Nakayama and Yakubo 
(1992) on the 2D SP cluster. They found that p = 1.7, in accordance with the theoretical 
behaviour of the gZ(q, w )  contribution (equation (43)) but in complete disagreement with our 
present results. We find, for the four models, that the values computed for the exponents are 
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between the theoretical values obtained for both contributions & z 8 > 62 and p (  < p < p2. 
However, introduction of exponent z leads to results that are in accordance with the theory: it 
is especially precise for 2D percolating networks where values obtained from the frequency 
dependence are in complete agreement with the values of z obtained from the wavevector 
dependence (table 2). This result holds for both contributions. The agreement is not so good 
for 3D percolating networks, but the values obtained from the frequency and wavevector 
dependence are in accordance if errors in the computed values are taken into account. 
These results show that it is not possible to neglect coherence between the scattering of 
different blobs, even in the qh >> 1 limit. This coherence arises from relations which exist, 
through the dynamics matrix, between the structure and components of the eigenvectors of 
the fractons. It is thus not possible to assume that the motion of the centre of the blobs are 
completely uncorrelated, since the phase factor and the components of the eigenvectors are 
not completely independent. 

In conclusion, in this work, we computed the dynamic structure factor of four percolating 
networks. Concerning the qh << 1 limit, our results confirm and supplement the previous 
numerical work and are in agreement with the scaling behaviour theoretically deduced by 
ACV. 

Concerning the qh >> I limit, our results indicate a scaling behaviour with exponents 
that differ from those obtained from theory assuming the simple scaling law (31) and (40). 
However, we have shown that the dynamic structure factor also complies with the very 
nice asymptotic behaviour g(q. U )  = qYH(qh(w)), where the scaling function H ( x )  is of 
power-law form x-?,  if we introduce an additional contribution (qh)' in equations (31) and 
(40). The values obtained for r' are about 1.20 for the 2D bond and SP lattices, respectively 
and 1.00 for the 3D lattices (table 3). These values do not correspond to the theoretical 
values given by equations (36) and (44) but are again consistent with the SLSP conjecture. 
Let us note that analysis of the data obtained by Stoll etal (1992) gives, for the slope of the 
scaling function, a value of about 1.30f0.2 for the 2D, BP !atfice and 1.1 f0.1 for the 3D 
lattices. In the 2D lattice, the slope of the scaling function is dependent on the value of the 
wavevector for the region qh - 1: close to this value, one obtains a slope of around 1.7, 
which could explain the disagreement with the results of Nakayama and Yakubo (1992). 
Computations with different types of interacting potential and different types of self-similar 
structure are now under way. The first results show that the SLSP conjecture, tested until 
now only with the percolating networks, is certainly more universal. 

Table 3. Values of the exponents r' from the values of 6 and 0 for the four percolating clusters 
For fixed values of a = 1.33 i 0.02 in the qk >> 1 limit. ri (theo) and T; (theo) are given by 
equations (36) and (44). respectively. 

6 B a r'(S) z; (theo) 6 (thea) 
, ,. .. , . , 

ZD BP -0.55io.10 0 .s8io.o~ 1 . 3 3 ~ ~ 0 . 0 2  1.25f0.10 1.27io.z o .47i00.0i"  2.61io.10 
1.30 i 0.20r 

2DSP -0.57fO.10 0.8OfO.05 1.33~kO.02 1.14+0.10 1.25fO.2 ~ 0.47i0.01 2.57i0 .10  

3DBP -0.65rt0.10 0.65f0.1 1.331,.0.02 1.22i0.2 0.85*0.25 0.62f0.01 2.68i0.15 
1.1OiO.10" 

3D SP -0.53i0.10 0.5710.1 1.3310.02 1.07f0.20 0.80i0.3 , 0.62i0.01 2.78f0.20 

From Stoll etul (1992). 
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