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Abstract. The dynamic structure factor of very large percolating clusters (bond and site), in two
dimensions and three dimensions are calculated nsing the spectral moments method. Interactions
are represented by the scalar model. Numerical results are presented and interpreted in terms
of scaling arguments given by Alexander, Courtens and Vacher (ACV) in 1993. Concerning
the gh <« 1 limit, our results confirm and supplement previous numerical work and are in
agreement with the scaling behaviour theoretically deduced by ACV. Concerning the gi 3 1
limit, we have shown that the dynamic structure factor complies with the very nice asymptotic
behaviour gig, @) = g H (gA(e)) where the scaling function H(x} is of power-law form x -
in agreement with the theory. However, our results indicate a scaling behaviour with exponents
that differ from those dednced by theory. The values obtained for t” are 1.20 for the two-
dimensional bond and site percolating lattices, and }.00 for the three-dimensional percolating
lattices. Comparisons with previous simulations are reported.

1. Introduction

One way of studying materials is to scatter particles from them. Two examples of this type
of experiment are Raman scattering of light and scattering of thermal neutrons. These
different types of scattering can be treated with the same formalism. The differential
cross section o{g, w) is directly related to the Fourier transform of the thermodynamics
correlation function g{(q, w), where hqg and ko are the momentum and the energy transferred
by the particle to the sample. In a perfect crystal, the displacement field can be developed
by plane waves and it is easy to show that, from the Bloch theorem, determination of
the correlation functions simply involves the computation of the inelastic structure factor
of the unit cell. In the presence of disorder, the system must be considered as a large
macromolecule and determination of the correlation functions is much more difficult. Two
methods have been developed to determine these quantities. The first method consists
of directly computing the differential cross section from models where: the positions of
particles and potential are known. Concerning percolating networks, such computations
have been done, using different techniques such as direct diagonalization (Montagna et al
1990, Stoll et al 1992), resonance methods (Yakubo and Nakayama 1989) or the spectral
moments method (Benoit et al 1992b). The spectral moments method directly provides
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the exact inelastic scattering cross section of very large systems and has been applied to
* determination of Raman scattering in polythiophene (Poussigue ef al 1991) and in ordered
and disordered Sierpinski gaskets (Benoit et al 1992a), and to inelastic neutron scattering of
quasicrystals such as the Fibonacci chain (Benoit ez al 1990) and i-AlMn (Poussigue et al
1994). Recently, applications of the method to the study of the propagation of sound waves
and electromagnetic waves in heterogeneous systems with or without energy dissipation
have been developed (Benoit ez al 1995).

Another approach using dynamic scaling considerations, without a specific physical
model, was developed by Alexander (1989) and Alexander, Courtens and Vacher (ACV)
{1993) in order to interpret a variety of inelastic experiments in fractal materials such as
sol-gel glasses (Boukenter et al 1986, Freltoft et al 1987), borate glasses (Fontana et al
1987), silica aerogel (Tsujimi et al 1988, Vacher et al 1990) and metal colloids (Duval et
al 1987, 1992). In this work, they postulated that vibrations of random fractals should be
characterized by a single unique length scale which combines the roles of a wavelength,
a scattering length and a localization length. They also related the dynamic correlation
function to the average strain of the fractal mass distribution. Alexander (1989) proposed
a scaling form for the dynamic structure factor and introduced a new and independent
exponent o related to the average coherent strain of fractons. The first attempt to compute
the dynamic structure factor and light scattering was done by Montagna ez al (1990), using a
diagonalization technique. They obtained results for site percolating (SP) networks formed
on 65 x 65 square lattices and 29 x 29 x 29 cubic lattices and claimed that the fracton
excitations cannot be scaled by a single length scale. However, the single-length-scale
postulate (SLSP) was confirmed by Sioll ez af (1992), who calculated the dynamic structure
factor for the bond percolating (BP) network, using a direct diagonalization technique, for
68 x 68 square lattices and 21 x 21 x 21 cubic lattices and by Nakayama and Yakubo {1992),
using a resonance technique, for SP networks formed on 500 x 500 square lattices.

To clarify some discrepancy between the numerical results obtained by the workers cited
above, we developed a systematic study of the dynamical structure factor on very large
SP and BP networks in two dimensions (500 x 500 square lattice} and three dimensions
(85 x 85 x 85 cubic lattice} using the spectral moments method (Benoit er al 1992b).

Before presenting the results and discussion, we shall introduce the scaling arguments
of the dynamic structure factor, as proposed by Alexander (1989) and ACV (1993), in order
to interpret our numerical results.

2. Scaling theory on the dynamic structure factor

Work on the dynamics of a percolating network has been fundamentally affected by the
paper of Alexander and Orbach (AQ) (1982}. In this paper, AOQ (1982) considered that
scaling with the frequency @ of the fracton density of states is

N(w) ~ of~! (1)

where the spectral dimension d is conjectured to be equal to 4/3, in the case of scalar
elasticity, independently of the fractal dimension D of the percolating network. This
conjecture was confirmed by many simulations (Yakubo and Nakayama 1987, 1989, Russ
et al 1991, Royer er af 1991, 1992, Rahmani et al 1993) (see also the review paper by
Nakayama et al (1994)). The dispersion relation between the localization length and the
frequency w is

Me) ~ o3P, @)
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The following arguments are derived from the theory proposed by ACV (1993). In
this work, they postulated that the vibrations of fractals should be characterized by a single
unique length scale which combines the roles of a wavelength, a scattering length and a
_ localization length. This SLSP was confirmed by simulations (Stoll er al 1992).

The inelastic cross section is directly related to the d1sp1acement—d1sp1acement
. correlation function, which is given by

2 (8w — ;) — (o + ;)

Glg, ®) = (@) + 1) Y lay(g)]
J

2wj
kT :
~ =22l @ - ) 3)
i
for w > 0, with n(w) + 1 ~ k7T /e and
a;(q) = ) goleenl) expliq - 7a) - @)

where 7, is the equilibrium position of the nth particle, w; and (an|j) are the frequency and
the (wn) components of the eigenvector |f) of the jth mode, & = x, y, z are the Cartesian
indices, kT is the thermal energy and g, is the component & of g.

The dynamic correlation function or dynamic structure factor g{gq, «) is defined by

gla.w) =Y la@sw—w). )
Y . .
Assuming the validity of the SLSP, in the case of scalar elasticity, the function g(g, w)
has a universal scaling form and depends only on the single length scale A{w) ~ w™%/?:
8(g. w) =g’ H(gh(w)) - (6)

where g = {g].
ACV postulate an asymptotic bchavmur of the scaling function H(x) of a power-law

form,
He) x° forx < 1 )
* X for x > 1.

7 and 7’ are new scaling positive exponents. It describes the modulation of the density in
space by vibrations.

2.4, The g <& I limit

The dynamic structure factor is directly cdnnected, for a given frequency w, to the g Fourier
component of the eigenvectors of fractons with a frequency ey close to w. In the gA < 1
limit, we are concerned about the Fourier components of the eigenvectors which correspond
to a wavelength much {arger than the length scale. This limit thus corresponds to long-range
motion. Within a vibrating region v;, in the small-g limit, we can expand exp(ig - 7} as
exp(iq - ) = explig - (r, — R)) +ig - ']
=explig- RO[1+ig- R} +- '] ®)

where Rf; =1, — R/ and R/ is the ‘centre’ of the vibration j defined by

Z |(een) /)27 / > Kemif)2. - @)
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The quantity «;(g) defined in [4] can be written as

a;(g) = explig- B’} Y gaDlyap , (10)
af
where
Dy =) Riglanl) (an
n
or in dyadic form
DI =>"Ri®@uviMm (12)

n

with v,{(n) = (en|j}. This quantity (12) characterizes the fth fracton. This averages out
all details of the internal motion, and it is only sensitivé to the average relation between the
vibrational amplitudes and the position within the jth fracton. Defining an average strain
tensor &/(r), it can be shown that

Dy =" RIGWI(RIY+ 3" RERIel(r) ‘ (13)
n 3 -
where ‘
; avl (’r)) ' :
J o
els = ( S (14)
8)65 0 .
The first term equals zero and equation (12) can be written as the dyadic product
bi=>(RI®R)-&. ‘ (15)
ney, ,

Since the R/ in the vibrating region v; are all of the order of A, we obtain a scaling relation
relating the magnitude of D and &:

Df ~e P2 (16)
Alexander (1989) assumes the écaling form
(@) ~ (A (17)

where ¢ is a new scaling index describing modulation of the density in the embeddidg
space by the vibration. The mean-squared amplitude is given by -

@) ~r"2, - (18)
By equation (5), one obtains

g(g, 0} ~ N(@) Y _ la;(@)*. S (19)

J

From equations (1Q), (16) and (17) and using the relations (1) and (2), one obtains tha}t

g(g. )~ g'w™ : . . (20)

- where y = 4 and

@ =1— (0 —4)d/D. ‘ 21)

To preserve the scaling ‘form {equations (6} and (7)), one deduces that ' i
y=20-Dd @

and

~

1]
|

R

(23)
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2.2. The g > 1 limit

In this limit, we are concerned about the Fourier components of the eigenvectors which
correspond to a wavelength much smailer than the length scale. The phase factor exp(ig-r,)
is therefore uniform over small regions of size [, ~ g™ &« A.

The vibrating region v will contain (A/1,)7 ~ (g1)® blobs of this size. Bach blob will
contain (ga)~P particles. With R/?, the centre of the mass of particles in the blob & in the
fracton region v; (small by construction), one obtains

exp(iq - ;) = explig - (r, — R”®) +iq - R¥’]

= explig - R*O)[1 +iq- B’ + -] (24)
where R}” = r, — R/?. Therefore the quantity
4@~ 3 explia- Rf”)}:qa[l +i Y qaRl3 |fanl . 05)
b a i .
reh .
Let us define Ud®, the average displacement on the blob of volume V, by
Ut = — Z«mu ~ P> (anlj). ' (26)
b ‘neb neb

So one obtains
aj(g) ~ anq DU explig - RJ”)+IZexp<lq R} Y " qugsRiplanls). @7)

neb
Phase factors explig+ (R’ — R/*)] clearly appear in evaluating g(g, @) (equation (3)).
For larger ¢ and very disordered systems, one has to conclude that there is no coherence
between the scattering of different blobs. .
Thus. g(g, w} is composed of two contributions:

8(g. ) = g1(g. 0} + g2(q, @) (28)
where the first term results from the separate motion of blobs and is gwen by
gi{g, ) = _(gn°lg~Pq - U#Ps(w — w)) (29)

J
and the second is related to the internal strain of the blob due to the jth fracton and is gtven

by '
2 s
g2(q, 0) = Zcqx)p[z 24dp R,{f;(omm] 8w — wy). (30)
j afl ' ,
. heb .

Assuming that

| U] ~ g*a=P o @10
- ACV, from equation (26), deduced that g;(g, w) comphes w1th the power law . rk
8i1q.w) ~ g"o” | ST € 23
where . o H | | '
B=d—1 o S (@3)
and -

81 =20 - D (34)
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where, to preserve the scaling form (equations (6) and (7)),'one deduces that

x=2c -1 (35)
and

1, =D — D/d. (36)

Following the same method as developed for g(g, @), in the gA <« 1 limit, one obtains for
the g2(q, w)

&g, w) ~ N(@)(gryPg* (D) (37)
where the e]ements of D/? are given by
DI =" RIERIES. < (38)
neb

Integration over the blob, in the continuous limit, gives

|D| ~ g~ P+ (39)
with -

(12[%y ~ a7 7P, (40)
One can deduce that

g2(g, w) ~ g0 (41)
where

§s=~D (42)
and

pr=20d/D+d—1 (43)
and, from equation (7},

=2 +D-D/d (44)

From Stoll et al (1992), one expects that overall motions of small blobs control the
limit gA 3> 1, Le. 7{. The internal strain of blobs would dominate for g ~ 1.

3. Numerical results

In this study, we compute the dynamic structure factor (equation (5)) of the site and bond
two-dimensional (2D) square and three-dimensional (3D) cubic percolating networks. In
all the systems below, we assume that atoms of mass m = 1 are placed on the lattice
sites. Interactions are represented by the scalar potential. The spring constant is taken to
be Ki; = 0 if either sites i or sites j are unoccupied and K;; = 1 otherwise. Each system
consists of a single very large cluster: the infinite cluster.

For harmonic solids, the moments method was first used by Montroll (1942) to calculate
the density of one-phonon states. In the dynamics of condensed matter, the exact evaluation
of the response was developed by Benoit (1987,1989) and applied to different systems
(Benoit er al 1990, 1992a,b, Poussigue ef al 1991, 1994, Royer et af 1991, 1992, Rahmani
et al 1993, 1994).

In this work, using the spectral moments methed, we developed calculations of g(g, w)
for percolating systems formed on 500 x 500 square and 85 x 85 x 85 cubic Iattices for
values of site and bond occupation probability p near p. (0.5 in two dimensions and 0.249
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in three dimensions for BP and 0.593 in two dimensions and 0.312 in three dimensions for
SP).

The fractal dimension D of these systems is I} = 1.89 and D = 2.5 in two dimensions
and three dimensions, respectively. Several tests were performed on three clusters formed
on cubic and square lattices of different sizes. We report here the results of clusters of
178205 sites (2D BP), 108 326 sites (2D SP), 226 940 sites (3D BP) and 106 993 sites (3D
SP). All exponents are the average of 23 values of g and o in the studies of @ dependence
and g dependence of g(g, w), respectively. For all clusters the computations were done for
100 different wavevectors 7/100 < g < w. We also note that the computations were done
for 200 different frequencies wpqy /200 < @ < Wy, = +/4d, with 4 the space dimension.

-

Loglglq, )

540 1 ] P — !

Log(w )

Figure 1. The dynamic structure factor g(g, w) versus @ on a log-log scale, for the 2D BP
cluster for eight values of g: —4—, ¢ =0.079; —0-—, 4 = 0.198; —O—, 4 = 0.314; —&—,
g = 0.498; —®—, g = 0.789; —0—, g = 1,251; —W—, g = 1.982; ——, g = 3.142,

In figures | and 2, we report, on a log-log scale, the fraquency dependence of the
dynamic structure factor g{g, w) for the d =2 and d = 3 BP clusters for some values of
the wavevector. The abscissa indicates the frequency w. In order to show that the data
collapse well, we report in figures 3 and 4 on a log-log scale, the gA(w) dependence of
the function H{gA(w)) = g 7g{q, w) for the d = 2 and d = 3 SP clusters. The abscissa
indicates the quantity gi(w). Curves are obtained by averaging over 50 values of the
wavevector g. We define ey as the frequency at which g(g. ®) has a maximum value for
gach fixed wavenumber g. As gi(wo) = 1, for w 3» g (@ € wp) this corresponds to
the gh € 1 (gi > 1) limit. In figures 5-8, the wavevector dependence of the function
g(g, ®)/q* for the d = 2 and d == 3 BP and SP clusters for some values of the frequency
are reported, on a log—log scale. The abscissa indicates the wavevector g. We define gp
as the wavevector at which the function g(g, w)/g* has 2 maximum value for each fixed
frequency w. As goh(w) = 1, for g > g0 (¢ < go) this corresponds to the g > 1
(gr & 1) limit. ’

The length scale versus the frequency for the 2D and 3D clusters are plotted, on a
log-log scale, in figures 9 and 10, respectively.

Let us consider the results concerning the 2D BP cluster. From figure 9, we observe
that the scaling length complies with the power law A(w) ~ @~ %7*%92_ From equation (2),
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10

Log{glq. @)

5.0 ! — L L e

-1 -0.5 L] 05 1
Log(w}

Figure 2. The dynamic structure factor glg, @) versus o, on a log-log scale, for the 3D BP
cluster for eight values of g —4—, g = 0.079; -~O-—, ¢ =0.125; —0—, g = 0.198; —A—,

g = 0314, —@—, g =0.498; —0—, g = 1.25]; —W—, ¢ = 1.982; —, ¢ = 2.736.
5¢
4t

s

s 3r

=0

o

‘e

w Ir

=] i,

= ‘
1 r
0 M R | ] RS e e e 0
15 -1 0.5 1

0.5 0
Log( gMw))
Figure 3. The function ¢~ g(g. w) versus gA{w), on a log-log scale, for the 2D SP cluster.

@) ~ »9/D_ According to the AO conjecture d = 4/3, with D = 1.89, one obtains
d/D =0.705. The agreement is very good.

Considering the asymptotic behaviour of the dynamic structure factor in the gi < 1
limit, the results show (figures 1 and 5) that the function glg,w) ~ gY@~ with
y = 4.00£0.05 and o = 2.31 £ 0.03 (table 1). These values are obtained by averaging
over 25 different wavepumbers (m/100 < g < m/4) for & and 25 different frequencies
(530mer /8 € @ £ 3Wmux/4) for . The behaviour of g{g, @) and the value of ¥ are in
complete agreement with the theory (equations (20), (21) and (22)). One obtains from
equation (23) v = 3.28 with d = 4/3. Using equation (22), one finds that o = 1.07 with
the AQ conjecture (table 1). These results are in agreement with the intuitive notion that
o 21 (ACV 1993).

In the g 3> 1 limit, the theory predicts the dynamic structure factor

g(g, ®) ~ Agh P + BgPwP: (45)
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Loglq " g(q, © )

g 1 I [ I 1 _
-1.5 -k

-0.5 0
Log( gh(e))
Figure 4. The function ¢~ g{g, w} versus ¢A{w), on a log-log scale, for the 3D SP cluster.

Loglglq,0)q )
EX

!JJ
(=]
T

lﬂ 1 1] J
<1 -0.5 Q 0.5
Log(q}

Figure 5. The dynamic structure factor g{g, @) versus ¢, on a log-log scale, for the 2D BP
cluster for six values of w: —4—, w = 0.226; —O—, = 0.353; —O—, @ = 0.552; —h—,
w=0.862; —8—, » = [,346; —O—, w = 2.101.

where 81, B1, 8, and By are given by equations (33) and (34) and equations (42) and (43)
as functions of ¢, 4 and D. From the value of & obtained in the g < 1 limit, one obtains
8 =023, f; =033, §; = ~1.89 and £; = 1.84 (table 2). The computation (figures 1 and
5) shows that g(g, @) ~ g°»? with the presence of two regimes. For gA ~ I the values of
the exponents are dependent on the values of g and w. However, for sufficiently larger ¢
(or smallest @), this limit is found to have very nice asymptotic behaviours g(g, w) ~ g’ w?
with § = —0.55 and 8 = 0.88, which are quite different from the expected values. These
values are obtained by averaging over 25 different wavenumbers (/4 < g < =) for § and
25 different frequencies (Wpax/200 € @ < Whayr/8) for 8.

However, as mentioned by ACV, it is possibie to assume the presence of an additional
factor (gA)° in equation (31) or in equation (40). Then, equation (28) is now written with
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60

501

a

Loglg{q, )fq )

3.0 F

2.0 i 1
1 -0.5

]
Log( q ) 13 4.5

Figure 6. The dynamic structure factor g(g, ) versus g, on a log-log scale, for the 2D SP
cluster for six values of @ —#—, @ = 0,226; —O—, w = 0.353; —D—, @ = 0.552; —d—,
o = 0.862; —O—, & = 1.346; — -, @ =2.101.

60 r

50

Loglglq.o )q )
-

W
o
T

20 L —

-1 0.5

! T
Loglq) 0 0.5
Figure 7. The dynamic structure factor g{g, @) versus ¢ on a log-log scale, for the 3D BP

cluster for six values of & —4—, & = 0.353; —Ow-, @ = 0.552; —J—, © = 0.862; —&—,
o= 1.346; —8—, 0 =2.101; —(—, @ =3.281.

equations (32) and (41) as

glg,w) ~ Aqﬁl-i-zlwﬁl—ZlafD + th-i-zzmﬁz-:ﬂ/p. 46)
By comparison with the computed values of § and B, for the first term, resulting from

the separate motion of the blobs, we find that z; = —0.80 from the g dependence and
21 =

—0.78 from the frequency dependence of the dynamic structure factor. Now, if
we assume that the second contribution resuiting from the internal strain of the blob is
dominant, one obtains z; = 1.34 from the g dependence and z; = 1.36 from the frequency
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6.0

Loglglq,@)q )

20 : : i
1 -0.5 0 0.5
? Loglq}
Figure 8. The dynamic structure factor g(gq, @) versus ¢, on a log-log scale, for the 3D SP
cluster for six values of w: —4—, o = 0.226; —O0—, w = 0.353; —0—, w = 0.552; —4—,
w= 0862, —®—, w=1.346; —0—, w =2.101.

Log(M®))

a L I i 1 L 1 1

02 04 06 08 1 12 14 16 18
Log(®) .
Figure 9. The values of the wavelength A(w) plotted as a function of frequency « on a’log-log
seale, for the 2D percolating clusters: #, 2D SP; O, 2D BP.

dependence. . - .

The same analyses have been performed on the three other clusters. The results are
summarized in tables 1 and 2. We have also reported the results obtained by Stoll et af
(1992) and Nakayama and Yakubo (1992).

4, Discussion and conclusion

First, we note the excellent agreement with the theory, for the four clusters, conceming the
scaling law of the length scale A{w) (figures 9 and 10 and tables 1 and 2). This behaviour
was verified by Stoll et al (1992) for the localization length on 2D and 3D BP clusters. In
our computation, (w) corresponds to a wavelength, defined as the inverse of the value of
g for which the Fourier components of the eigenvectors of fractons with a frequency o are
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0.5 -~

0.25

Log(A(®) )
o

-0.25

0.5 L | | {

0.75 1 123 15 175
Log(®)

Figure 10. The values of the wavelength A(e) plotted as a function of frequency « on a log-log
scale, for the 3D percolating clusters: O, 3D SP; 4, 3D BP.

Table 1. Values of the exponents y, e, d, o and t for the four percolating clusters in the
gh < 1 limit. (d/D}y,m are cleiduced from figures 9 and 10. {d/D),., are calculated from the
fixed values of D = 1,89 and 4 = 1.33 £ 0.02.

¥ ® d @/ D @/ DVithen @ r

JDBP 4004005 2304003 1334002 0734002 070+001 107+£004 328+010

L.os" Y i

2D SP  3.98:+005 234003 1.334£002 070+£002 070£001 1.0540.04 3.3320.10
L.11b 3.320

3DBP 4.00+0.05 203+£003 133002 0554002, .053£001 [.03:005 3.82=0.1
LI 3.65%

3DSP 4004005 198£003 1332002 053x002 053=x000 1084005 3.72x0.11

A From Stoll er af (1992),
® From Nakayama and Yakubo (1992).

maximum. These results are in agreement with the SLSP of ACV,

As can be shown in table 1, in the gA <« 1 limit, where g~} is much larger
than the fracton size, for the four models we note that, in agreement with the theory,
glg, w) ~ g*** % From the f-value or from the scaling form of the 2D and 3D SP
systems {figures 3 and 4), one obtains v =~ 3.30 for the 2D systems and T =~ 3.77 for the
3D systems, in agreement with the values of Stoll et al (z7(2D) =~ 3.32 and 7(3D) =~ 3.65)
obtained for 2D and 3D BP networks, and of Nakayama and Yakubo (z(2D) == 3.20) for
the 2D 3P cluster.

We note that in the four systems the values obtained for o are in accordance with the
conclusion of ACV that ¢ > 1.

The only precise work concerning the gA 3> 1 limit is that of Nakayama and Yakubo
(1992) on the 2D SP cluster. They found that g = 1.7, in accordance with the theoretical
behaviour of the g2(g, @) contribution (equation (43)) but in complete disagreement with our
present results. We find, for the four models, that the values computed for the exponents are
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between the theoretical values obtained for both contributions & > 8 > S and 8; < 8 < Ba.
However, introduction of exponent z leads to results that are in accordance with the theory; it
is especially precise for 2D percolating networks where values obtained from the frequency
dependence are in complete agreement with the values of z obtained from the wavevector
dependence (table 2). This result holds for both contributions. The agreement is not so good
for 3D percolating networks, but the values obtained from the frequency and wavevector
dependence are in accordance if errors in the computed values are taken into account.
These results show that it is not possible to neglect coherence between the scattering of
different blobs, even in the gA 33> 1 limit. This coherence arises from relations which exist,
through the dynamics matrix, between the structure and components of the eigenvectors of
the fractons. It is thus not possible to assume that the motion of the centre of the blobs are
completely uncorrelated, since the phase factor and the components of the eigenvectors are
not completely independent.

In conclusion, in this work, we computed the dynamic structure factor of four percolating
networks. Concerning the gA < 1 limit, our results confirm and supplement the previous
numerical work and are in agreement with the scaling behaviour theoretically deduced by
ACV.

Concerning the g > 1 limit, our results indicate a scaling behaviour with exponents
that differ from those obtained from theory assuming the simple scaling law (31) and (40).
However, we have shown that the dynamic structure factor also complies with the very
nice asymptotic behaviour g(g. w)} = ¢” H(gA{w)), where the scaling function H(x) is of
power-law form x~7, if we introduce an additional contribution (gA)? in equations (31) and
(40). The values obtained for =’ are about 1.20 for the 2D bond and SP lattices, respectively
and 1.00 for the 3D lattices (table 3). These values do not correspond to the theoretical
values given by equations (36) and (44) but are again consistent with the SLSP conjecture.
Let us note that analysis of the data obtained by Stoll ez al (1992) gives, for the slope of the
scaling function, a value of about 1.30+ 0.2 for the 2D BP lattice and 1.1+ 0.1 for the 3D
lattices. In the 2D lattice, the slope of the scaling function is dependent on the value of the
wavevector for the region gi ~ 1; close to this value, one obtains a slope of around 1.7,
which could explain the disagreement with the results of Nakayama and Yakubo (1992).
Computations with different types of interacting potential and different types of self-similar
structure are now under way. The first results show that the SLSP conjecture, tested until
now only with the percolating networks, is certainly more universal.

Table 3. Values of the exponents 7' from the values of § and 8 for the four percolating clusters
for fixed values of d = [.33 £ 0.02 in the ¢A 3> 1 limit. 7] (theo) and 7] (theo) are given by
gquations (36) and (44), respectively.

5 B d T'(8) ' (5) z{ (theo} 73 (theo)
2D BP ~0.55:0.10 088:005 133+£002 1254010 12702 047001 261+0.10
1.30 + 0.20°

D8P —057x0.10 080005 133£002 114%010 1254+02 047X 001 2570100

ADBP -—-0.65+0.10 065+0.0 1331002 122402 085+025 0621001 2.68%+0.15
1.10 % 0.10¢

3JDSP 0534010 05701 [334002 1.074+020 08003 0624000 2781020

% From Stoll er af (1992),
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